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Abstract—Traditional fixed-gain control has proven to be un-
successful to deal with complex, strongly nonlinear, uncer-
tain, and changing systems such as a damaged aircraft. Con-
trol systems with components that canadapttoward changes
in the plant, e.g., using a neural network, have been actively
investigated as they offer many advantages (e.g., better per-
formance, controllability of aircraft despite of a damaged
wing). However, neuro-adaptive controllers have not been
used in safety-critical applications, because performance and
safety guarantees cannot be provided at development time—a
major prerequisite for safety certification (e.g., by the FAA or
NASA). In this paper, we will describe our approach toward
V&V of neuro-adaptive controllers. We have developed tools
which dynamically estimate the neural network performance
and safety envelope, using a Bayesian approach. We will dis-
cuss our V&V approach, the tool architecture and simulation
experiments within NASA’s IFCS (Intelligent Flight Control
System) project.
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1. INTRODUCTION

Emerging aerospace system operational goals, such as au-
tonomy, will require advanced safety-critical control systems
consisting of unconventional requirements, systems architec-
tures, software algorithms, and hardware implementations.
These control systems will make use of sophisticated mod-
els and controllers (adaptive), the behavior of which cannot
always be simply characterized. Due to the operational un-
certainties and communication delays, on board systems need
to be dynamic, providing for rapid reconfiguration and mod-
ification in order to respond to unanticipated mission prob-
lems. The control system may need to make decisions in an
unstructured environment, the functions being performed in
the past by human operators of mundane tasks. To protect the
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aircraft from hazards, a high degree of autonomy is desired.
Truly autonomous operations will require air and space ve-
hicle safety-critical control system enhancements to achieve
required safety levels without reliance on human intervention.
Flight critical system requirements assert that the occurrence
of any failure condition that would prevent the continued safe
flight and landing of the airplane shall be extremely improb-
able. Applicability of advanced and adaptive control systems
strongly depends on affordable V&V strategies that reduce
costs and compress schedules for flight certifications.

Despite the scrutiny that adaptive control has received in
a theoretical context, complex controllers that incorporate
adaptation and intelligent decision making have not yet been
used in mission or safety-critical applications, simply because
the “right” tools for verification and validation have not been
applied to the adaptive controller, frequently leading to in-
correct judgments of the control performance. While theory
and concepts of adaptive systems and intelligent control have
been studied in depth over the past decade or so, very little at-
tention has been paid to the issue of validating the correctness
and safety of their operation. In particular, controllers for
safety and mission-critical applications must satisfy a strin-
gent verification and validation program which assigns quan-
titative bounds to their output error under all operating condi-
tions, and guarantee that no combination of inputs will result
in an undesirable output.

Hence, verification and validation technologies and tools are
needed that can assure the reliable and safe operation dur-
ing all operating conditions. In this paper, we will describe
our approach to verification and validation of adaptive con-
trollers, which are based upon neural networks (NN). We
have developed tools which support the automation of veri-
fication, validation, and dynamic monitoring of system per-
formance for reliable and safe operation. The time and cost
for certifying new safety-critical systems could potentially
be radically reduced through the application of new software
technologies. Our primary goal is to enable affordable de-
velopment of future safety-critical systems with prescribed
levels of safety and reliability. The primary benefit is en-
abling cost-effective, rapid development of safe and reliable
autonomous safety-critical systems.

In Section 2, we will give a brief description of the IFCS (In-
telligent Flight Control System) adaptive controller, which is



used as our example throughout the paper. Then, we discuss
our layered approach to V&V, before we describe our tools,
the Confidence Tool and the Envelope Tool, and present ex-
perimental results.

2. BACKGROUND : NEUROADAPTIVE
CONTROL

We will illustrate our approach with the adaptive flight con-
trol system (FCS) which has been developed within the IFCS
project at NASA and give a brief description of its adaptive
control architecture [11]. The target aircraft for this controller
is a specifically configured F15 jet aircraft. It is equipped with
additional actuator surfaces (canards) that are located infront
of the wings. By moving them, the airflow over the wing can
be modified in a wide range. Thus, this aircraft can be used
to simulate failures like wing-damage during test flights. The
FCS (Fig. 1) is a straight-forward dynamic inverse controller:
the pilot steering commands are mixed with the current sen-
sor readings (airspeed, angle of attack, altitude) to form the
desired behavior of the aircraft (measured as roll-rate, pitch-
rate, and yaw-rate). The dynamic inverse model then cal-
culates the required actuator movements (e.g., of aileron or
rudder) to bring the aircraft into the desired state.

If the aerodynamics of the aircraft changes (e.g., due to a bro-
ken surface), there is a deviation between desired and actual
state. The neural network is trained during operation to pro-
duce a correction signalUAD to minimize this deviation. The
inputs of the neural network are typically the current stateof
the aircraft (i.e., the sensor signals), the commanded input,
and the correction signal of the previous time frame.
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Figure 1. IFCS Adaptive Control Architecture

The controller (IFCS Gen-II, [8], [2]) uses a Sigma-Pi neural
network [7]. In this network (Figure 2), the inputs are sub-
jected to basis functions (e.g., square, scaling, logisticfunc-
tion). Then products (Π) of these function values are calcu-
lated. The final output of the network is a weighted sum (Σ)
of these products—hence the name of this architecture.

The network is trained according to a given update rule [8].
The weight update rule is derived from a Lyapunov stability
analysis of the entire controller. In this paper, we will not
discuss this weight update rule (see [8] for details), because
our approach is independent of the learning rule. In fact, our
algorithm can easily be adapted for other network types.
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Figure 2. Architecture ofΣΠ network

3. V&V OF ADAPTIVE CONTROL

All safety-critical software applications require careful veri-
fication and validation of the software components, ranging
from extended testing to full-fledged certification procedures
(e.g., DO178-B). Many incidents (e.g., Ariane 5, Mars Po-
lar Lander, Mars Climate Orbiter) illustrate the importance of
this issue.

A number of prototypical/experimental application of neural
networks in safety-critical areas have demonstrated superior
behavior and practical usefulness. Unless, however, methods
and techniques have been developed which are capable of as-
suring the correctness and performance of a neural-network
based system, NN applicability in safety-critical areas issub-
stantially limited. The adaptive nature of neural networksre-
quires a significantly different approach to V&V than used
for traditional software. Although traditional V&V and certi-
fication practices have historically produced sufficientlysafe
and reliable aircraft control systems, they will not be costef-
fective for next-generation autonomous control systems due
to inherent size and complexity increases from added func-
tionality. Current V&V methods, which rely heavily on test-
ing, make up a large fraction of development costs of a sys-
tem, yet they do not strictly guarantee performance. Dynamic
adaptation of parameters, iterative numerical algorithms, and
complex control architectures renders traditional approaches
to V&V impracticable.

Currently, there is no established way to verify and vali-
date adaptive and intelligent flight-critical control software
leading to certification. In order for any flight critical soft-
ware to be certifiable by the Federal Aviation Authority
(FAA), it must be developed according to a detailed and
well-documented software development process, which is ex-
tremely time-consuming and costly. The specific require-
ments for adaptive systems, however, are not easily dis-
cernible. Moreover, as emerging safety-critical systems be-
come more complex, system certification costs will increase
exponentially due to projected increase in required testing re-
sources, such as hardware in loop (HIL) testing labor.

To address the problem, we are developing and maturing
a multi-layered approach to V&V techniques and methods
for intelligent adaptive controllers (Fig. 3) [10], [11]. The
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core layer contains rigorous, mathematically sound results
concerning robustness, stability, or Vapnik-Chervonenkis-
dimension arguments to reason about the potential of learn-
ability. These methods, however, only can provide relatively
weak results, often in form of asymptotic guarantees, which
are not sufficient to guarantee the required safety and reliabil-
ity properties for safety-critical applications.
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Figure 3. Layers of ANN V&V methods

Intelligent testing and error checking on the second layer pro-
vides additional performance and safety guarantees. Testing
of an adaptive controller, however, is far from trivial, because
testing needs to take into account the system’s history (usu-
ally resulting in a prohibitively large number of test cases)
and the current state of the adaptive component (nominal, in
adaptation, adapted). V&V tools will be designed in such a
way that they are fine-tuned to meet the demands and idiosyn-
crasies of adaptive or autonomous systems.

For truly adaptive systems, however, we still do not havea-
priori guarantee for performance. Here, the third layer comes
into play: methods in this layer will dynamically monitor the
system and its behavior. Such a monitor will return dynamic
information on how the system currently behaves and if the
current state of the system is recoverable at all.

4. V&V T OOLS

In the following, we will describe two tools, which have been
developed by the authors to specifically address the V&V is-
sues discussed above. The tools are based on a Bayesian ap-
proach and produce a statistical sound estimation of the net-
work’s current performance. These tools can be used dur-
ing the entire software life cycle, during design time to as-
sess and fine-tune the network architecture, during validation
tests, and to dynamically monitor the network’s behavior af-
ter deployment.

Confidence Tool

The knowledge of the current quality of the model is impor-
tant in order to obtain a probability under which a feedback
controller exceeds it robustness limits. Any feedback con-
troller can always handle small deviations between the model
and the actual plant dynamics. However, this robustness is
strictly limited by the design of the controller, so large de-
viations between model and plant or a very noisy model can
cause severe problems. OurConfidence Tool(CT) [4] pro-
duces a quality measure of the neural network output, which
directly can be used to assess the model quality1. In order to
define our performance measure, we calculate the probability
density functionp(o|x,D) of the network outputo when it
is subject to inputsx and the network has been trained with
training dataD. Assuming a Gaussian (Normal) distribution,
we use its characteristic parameter, the standard deviation σ2

as our performance measure. A smallσ2 results in a narrow
bell-shaped curve, meaning that, with a high probability, the
actual value is close to the returned value. This indicates a
good performance of the network. A largeσ2 corresponds to
a shallow and wide curve. Here, a large deviation is probable,
indicating poor performance.

Our confidence tool uses an algorithm, following the deriva-
tion in [1]. The CT has been implemented in Matlab (for
a Simulink environment) and in C. The CT tool is currently
implemented on the flight computer on a NASA F-15 aircraft
and is scheduled for manned test-flights in the near future.
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Figure 4. Confidence valueσ2 over time(top)and pilot
commands for roll axis (bottom). A failure has occurred at

T = 1.5s.

Figure 4 shows the results of a (Simulink) simulation exper-
iment carried out with the on-line adaptive controller of Fig-

1In the Gen-II architecture, the network produces a control augmentation
signal which is directly fed into the inverse model. In adaptive control archi-
tectures where the NN directly encodes the model (e.g., [6]),the CT directly
produces the quality measure.
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ure 1. In the top panel,σ2 is shown over time (small por-
tion of a simulated test flight). At timeT = 1.0s, the pi-
lot issues a specific command, a so-called doublet (fast stick
movement from neutral into positive, then negative and back
to neutral position; Fig. 4(lower panel)). Shortly afterwards
(T = 1.5s), one control surface of the aircraft (stabilizer)
gets stuck (“failure”). Because the system dynamics and the
model behavior do not match any more, the neural network
produces an augmentation control signal to compensate for
this deviation. The network weights are updated according
to the given weight update rule. Initially, the network con-
fidence is very high, but as soon as the damage occurs, the
network has to adapt. Here,σ2 of the network output in-
creases substantially, indicating a large uncertainty in the net-
work output. Due to the dynamic training of the network, this
uncertainty decreases very quickly.

A second and third pilot command, which is identical to the
first one is executed atT = 11s, andT = 17s, respectively.
During that time, the network’s confidence is still reduced,
but much less than before. This is a clear indication that the
network has successfully adapted to handle this failure situa-
tion.
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Figure 5. Confidence valueσ2 (top)and weights of the
network over time (bottom). The system has been subjected
to the same pilot commands as shown in Fig. 4. However,
the learning rule of the neural network is “broken”, leading
to the inability of the network to converge (weights diverge
during the second doublet). An extremely high value ofσ2

(just before the simulation terminated atT = 14s) clearly
indicates the problem.

Figure 5 shows the results of a simulation with the same pilot
inputs as before. However, the network weight update rule
was corrupted on purpose, such that the network was not able
to adapt toward a solution. This behavior, which leads to an
uncontrollable system after the second pilot command (which
also causes termination of the simulator run), can be clearly

seen in the top panel of Figure 5. The increase ofσ2 during
the first doublet is roughly the same as before, although the
network takes longer to gain confidence there. However, dur-
ing the second doublet, the weights of the network diverge
(due to the corrupted update rule), leading to large and erratic
outputs. The value ofσ2 reaches a peak value of approxi-
mately 140, before the simulation has to be stopped. This
(albeit extreme) scenario demonstrates the tool’s abilityto
detect—in real time—situations where the neural network is
not behaving correctly. Thus, the tool output can be used
to activate emergency measures (e.g., reverting to a different
controller, cockpit annunciation, etc.).

Envelope Tool

The Confidence Tool calculates the current performanceσ2

of the neural network. This measure, however, gives no indi-
cation on the network performance in subsequent time steps
or in the face of small perturbations of the input values. Be-
cause the NN is a non-linear function approximator, the ac-
curacy (and thus the performance) can change drastically due
to small changes in the input values. We therefore define the
notion of asafety envelopeof the NN behavior around the cur-
rent point of operation (i.e., current inputx). This safety en-
velope is a region aroundx, where the corresponding network
performanceσ2

x
is not larger thanσ2

x
+ Θ for a given thresh-

old Θ. Intuitively, the safety envelope is a “dish” around the
current point in the input space. Figures 6, 7 show a two-
dimensional example. Figure 6 is a graphical representation
of the underlying “true” function, which the neural network
has to approximate. This function has two modes, based upon
the value of one input parameter. A typical example for such
a behavior is the change of the system dynamics when the
sound barrier is reached. In our example, the network has
been trained only on mode 1 (the front part of the surface).
Figure 7 shows the performanceσ2 over the two inputs. The
curvature of this surface strongly depends on the underlying
process and the training of the network. It is easy to see that
for the area, where the network has been trained,σ2 is small.
σ2 increases in areas, where the NN has not been trained (in
our case, mode 2). The safety envelope is shown as the area
in black at the bottom of this figure.

The safety envelope can provide valuable information about
theestimatedperformance of the NN, since it provides perfor-
mance values for possible future situations. For example, if
Figure 7 depicts a situation of a climbing aircraft, then we can
expect a similar performance in the near future for a slightly
higher altitude. Here, we assume that the network is fixed.
This is a reasonable assumption, because the online learning
processes are slow compared to the basic update cycle. The
shape and size of the safety envelope around the current point
of operation thus provides a distance from the current point
to the border of the safety envelope. To ensure reliable opera-
tion, this distance should be reasonably large. Combined with
the value ofσ2

x
, we can get one of the three situations, shown

in Figure 8 for a one-dimensional representation. The current
point of operation and the safety envelope (an interval) are
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Figure 7. Performance surface and safety envelope for a
neural network with two inputs (e.g., airspeed and altitude):
Performance measureσ2 and safety-envelope (black). The
network has been trained with selected data points from the

function in Fig. 6.

marked. In situation (A, left), we have a largeσ2

x
, i.e., a rel-

atively bad performance. The large safety envelope indicates
that in the vicinity ofx, no improvement (or degradation) of
performance is to be expected. This situation typically shows
up in scenarios, where the network still has to adapt toward
a solution. However, small disturbances and changes in the
plant behavior will not cause a catastrophic loss in network
performance. Situation (B, middle) is a much better scenario.
Here, the current performance is good, and the safety enve-
lope is wide. Situation (C, right) shows a very good network
performance at the current point of operation. However, small
disturbances can result in a drastic loss of network perfor-
mance (largeσ2) which could lead to dangerous (unstable)

situations. Such a situation is a clear indication that the net-
work either cannot learn the current situation, or the network
has been overtrained. The latter situation usually resultsfrom
a design error.

Pt of Op.x xx

σ2 σ σ2 2

Pt of Op. Pt of Op.

Figure 8. Three scenarios for the safety envelope

5. CONCLUSIONS

Research has shown that neuro-adaptive controllers exhibit
many advantages (e.g., better performance, controllability of
aircraft despite a structural damage) and can substantially
save development costs. However, their practical applica-
bility in safety-critical areas is limited, because traditional
V&V methods fail, and there exist no methodology for pro-
viding safety and performance guarantees. In this paper, we
have discussed the specific requirements for V&V of adap-
tive systems. Because mathematical analysis often produces
results which are too weak, analysis has to be augmented by
tests, which take the process of adaptation into account. Due
to the requirement of being able to adapt toward unforeseen
events, monitoring the performance after deployment is nec-
essary. To this end, we have developed two tools: the Con-
fidence Tool calculates the current network performance, the
Envelope Tool estimates a safety envelope with adequate per-
formance. Although the confidence tool will be flight tested
in the near future, this approach only marks the beginning
of novel V&V approaches for adaptive control. We will ex-
tend our work to address the relationship between the network
performance (i.e., the outputs of the confidence and envelope
tool) and the handling quality of the controlled system. An
estimate of the expected aircraft handling quality provides
a kind of feedback that can be directly assessed by the pi-
lot. Our work indicates that Bayesian statistical approachfor
V&V is an effective approach and further research in this field
is worth pursuing.
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